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A NEW  MATRIX THEOREM AND ITS  APPLICATION FOR 

ESTABLISHING INDEPENDENT COORDINATES FOR COMPLEX 

DYNAMICAL  SYSTEMS  WITH  CONSTRAINTS 

By William  C.  Walton, Jr., and Ear l  C. Steeves 
Langley  Research  Center 

SUMMARY 

A new method is presented by  which  equations of motion of a linear  mechanical 
system  can  be  derived  in  terms of independent  coordinates when the system is described 
in   terms of coordinates which are not independent  but  instead are  governed by linear 
homogeneous  equations of constraint.  There is a discussion of the origin  in  practical 
vibrations  analysis of dynamical  systems  involving  equations of constraint.  Methods 
previously  used  for  handling  such  systems are discussed  and  the new  method is demon- 
strated  to  have  the  following  advantages: (1) For  the  most  general  constraint  equations, 
solution of the  equations is reduced  in  substance  to  computing  the  eigenvalues  and  eigen- 
vectors of a symmetric  matrix;  and (2) the  method is applicable when there are redun- 
dancies  in  the  equations of constraint. 

INTRODUCTION 

The  purpose of this  paper is to  present a method by which  equations of motion of a 
linear  mechanical  system  can  be  derived  in  terms of independent  coordinates when basic 
information  about the system is available  in  terms of coordinates which are not  inde- 
pendent  but  instead are governed  by  linear  homogeneous  equations of constraint. Neces- 
sity  for  this  derivation  occurs  frequently  in  practical  vibration  analysis. It arises 
naturally  in  studies of the  motions of bodies  composed of components  which  have  been 
idealized as separate  bodies.  Experience  in  analyses of vibrations of engineering  struc- 
tures  has convinced  the  authors  that  this  method  often  offers  decided  advantages  in  prac- 
tical computation  over  methods  previously  used. 

The  method is based  on a mathematical  theorem  designated  the  "zero  eigenvalues 
theorem"  which  allows  the  computational  procedures  to be systematically  developed.  A 
search of the  mathematical  literature  has  been  made  and  nowhere  has  this  result  been 
found . 



The  paper  begins  with a background  note  on  dynamical  systems  involving  constraint 
equations. A brief  discussion of approaches  previously  taken  in  treating  such  systems 
follows.  The  zero  eigenvalues  theorem is proved,  and  the  method of this  paper is dis- 
cussed.  There is a development of the  relationship  between  the  result  obtained by the 
method of this  paper  and  the  result  obtained by the  method  generally  taught  in  engineering 
textbooks. Two examples of application of the  theorem  to  problems  from  vibration  anal- 
ysis  are  presented  and  the  numerical  considerations  involved  in  practical  computing with 
the  method are  discussed. 
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SYMBOLS 

an R X R partitional  submatrix of matrix C 

an R X (P - R) partitional  submatrix of matrix C 

a constant  matrix of order  R X P 

a constant  matrix  defined by equation (23) 

a constant  matrix  defined by equation (14) 

elements of vector Q in first example 

number of positive  finite  elements of diagonal  matrix h 

any  nonsingular  matrix of order  P - G 

identity  matrix 

stiffness  matrix  referred  to  coordinates  q 

stiffness  matrix  referred  to  coordinates ;i 

Lagrangian 

length of cylinder 

mass  matrix  referred  to  coordinates  q 
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P 

P 

Q 

Q 

qm ,4 
- 

R 

- 
T 

mass  matrix  referred  to  coordinates ;i 

axial wave  number 

number of elements  in  vector  q 

subscript  denoting  general  element  in  vector  q 

number of elements  in  vector 6 

subscript  denoting  general  element in vector i 

generalized  forces  referred  to  coordinates  q 

generalized  forces  referred  to  coordinates i j  

a vector whose elements  are  independent  coordinates 

a vector whose elements  are  dependent  coordinates 

a partition of 6 containing R elements 

a partition of ;i containing  those  elements not in ,(a) 

coordinates  associated with axisymmetric  circumferential 
harmonic 

coordinate  associated with fourth  circumferential  harmonic 

number of rows in matrix C 

radius of cylinder 

quadratic  form  defined by equation (19) 

a constant  matrix  in  equation (33c) relating  the  coordinates i to 
the  coordinates  q 

matrix  defined by equation (35) 

3 



U 

U 

V 

- 
V 

W 

ZC 

a TJ 

P 

6 

modal  matrix of matrix E 

longitudinal  displacement of shell 

an arbitrary  vector of order P 

a vector  defined by equation (22) 

work of external  forces 

elements of vector  q  for first example 

a vector  defined by equation (30) 

a vector whose elements  are first G elements of ii 

displacement of center of disk  in 5 direction 

rotation  about [-axis 

rotation  about q-axis 

a constant  matrix  in  equation (9) relating  dependent  coordinates 4 
to  independent  coordinates  q - (b) 

variational  operator 

coordinates  used in second  example 

a real diagonal  matrix 

a real  diagonal  matrix whose elements  are  positive  elements of X 

pth  diagonal  element of matrix X 

denotes  differentiation with respect  to  time 

denotes  transpose of a matrix 
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1 1  denotes a row  matrix 

C l  denotes a rectangular  matrix 

0 denotes a column  matrix 

BACKGROUND 

In  conventional  analyses of small  forced  oscillations of mechanical  systems,  the 
physical  system is idealized so that its configuration at any  instant is determined by 
specification of a finite  number of independent  coordinates  ql,  q2, . . ., qn, . . ., qN. 
Then,  with  approximations  allowable  because of the  assumed  smallness of the  oscillations, 
the  Lagrangian of the  system  may  be  expressed as in  reference 1 in  the  form 

where 

(1) q is a column  matrix  the  elements of which are  the  coordinates q, 

(2) M and  K are  constant  symmetric  matrices of order  N 

(3) A  prime  denotes  the  transpose of a matrix 

(4) A  dot  denotes  differentiation  with  respect  to  time. 

When the  Lagrangian has the  form shown by equation (1) and  the  coordinates  qn 
a r e  independent,  Lagrange’s  equations of motion of the  system have the  form  (see  ref. 1): 

M i  + Kq = Q (2) 

In  equation (2) Q is a column  matrix  with N elements.  The  elements of Q a r e  
usually  called  generalized  forces.  The  generalized  forces  are  determined by the  fol- 
lowing requirements:  Let 6q be  an  arbitrary  infinitesimal  variation of the  coordinates 
composing  the  matrix  q.  Then  the  work W done by the  forces  applied  to  the  system 
when these  forces  act  through  the  displacements  produced by the  variation  shall be given 
by the  equation 

W = Q’ 6q (3) 

The  generalized  forces  may  be  functions of the  coordinates  qn  and/or  the  time 
explicitly. 

Once  the  equations of motion a r e  known in  the  form  indicated by equation (2), there 
is a well-established  and  very  effective body of mathematical  theory  and  computational 
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technique  for  determining  the  behavior of the  system.  Often,  however, it is much eas- 
ier to  express  L  and W in   t e rms  of coordinates which a r e  not  independent  but  which 
are governed by linear  homogeneous  equations of constraint. (See ref. 2.) Let 
dl, ij2, . . ., qp, . . ., Qp represent  such a set of coordinates.  The  constraint  equa- 
tions  then  take  the  form 

- 

cs = 0 (4) 

where ;i is a column  matrix  the  elements of which are  the  coordinates (Tp, and  where 
C is a constant  matrix which has P columns  and is, in  general,  rectangular. 

In t e rms  of the  dependent  coordinates ip, the  Lagrangian will take  the  form 

where  and E are   symmetr ic   matr ices  of order P. The  work W can  be found in 
the  form 

w=$ (6) 

where 6s  is an  arbitrary  variation of s compatible  with  the  equations of constraint 
(eq. (4)) and a is a column  matrix  with P elements which are functions of the  coor- 
dinates sp and/or  the  time  explicitly. 

It is useful  to know a systematic  procedure by which equations of motion  in t e rms  
of independent  coordinates, as in  equation (2), can  be  derived by starting with the 
Lagrangian  L  and  the  work W in t e rms  of coordinates  governed by homogeneous 
equations of constraint as in  equations (5) and (6). The  object of this  paper is to  set  forth 
such a procedure, but before  doing so,  it is appropriate  to  discuss  briefly how the  prob- 
lem  has  been  solved  previously. 

PREVIOUS METHODS 

In the  past,  the  equations of motion in   t e rms  of independent  coordinates  have been 
determined  in  two ways: 

(1) Through  consideration of particular  physical or geometrical  aspects of a prob- 
lem,  the  dependent  coordinates sp a r e  chosen to  impart a very  simple  form  to  the  equa- 
tions of constraint, which renders  easy and  obvious  determinations of the  independent 
coordinates. 

(2) By using one of many  variants of Gauss's  classical  elimination  algorithm,  the 
equations of constraint are solved as simultaneous  equations;  these  solutions  lead  to  the 
selection of certain of the  coordinates as independent  coordinates  and  the  expression of 
the  remaining  coordinates  in  terms of those  which  have  been  selected  to  be  independent. 
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Under  the first category of approaches  come,  for  example,  those  finite-element 
methods of structural  analysis  in which the  coordinates of a free-body  element are dis- 
placements  and  rotations at juncture  points  among  structural  elements. In such  anal- 
yses  the  equations of constraint are equalities  among  appropriate  displacements  and 
rotations at junctures  and  equations  in  which  appropriate  displacements  and  rotations 
are set  equal  to  zero at junctures  where  there are supposed to  be  rigid  constraints.  A 
set of independent  coordinates is determined by the  simple  expedient of using a single 
symbol  for  each  set of displacements  and  rotations  which a r e  equated.  (See,  for  example, 
ref. 3.) This  idea is the  basis of the now widely  used  procedure of superimposing stiff- 
ness  matrices or mass  matrices of structural  elements  to  determine a stiffness  matrix 
or  a mass  matrix of an  entire  structure  composed of the  connected  elements. 

In order  to  illustrate  some  advantages of the  method  to  be  presented,  the  method 
generally  taught  in  engineering  textbooks is discussed  formally.  (See,  for  example, 
ref. 4.) This  method  belongs  in  the  second  category of approaches. It is assumed  (usu- 
ally  tacitly)  that  the  rank R of the  matrix C is equal  to  the  number of rows in C and 
that,  therefore,  equation (4) may  be  written as 

where 

(1) A is an R X R nonsingular  constant  matrix  the  columns of which a r e  R 
distinct  columns of C 

(2) B is an R X . ( P  - R) constant  matrix  the  columns of which are  those  columns 
of C not included  in  A 

(3) G(a) and a r e  column  matrices  the  elements of which are  elements of i 
corresponding  to  the  columns  in A and B, respectively.  The  goal is to  establish  the 
coordinates  in $b) as independent  coordinates. 

By renumbering  the  coordinates ip, it can  be  arranged  that  the first R columns 
of C constitute  the  matrix A and  the last P - R columns of C constitute  the 
matrix B. Correspondingly,  the  elements of $a) would be  the first R elements of 
<, and  the  elements of c(b), the last P - R elements of 6. For convenience  in  the 
ensuing  discussion, it is assumed  that  such a rearrangement  has  been  made.  However, 
as a practical  matter, it is very  important  to  note that in  order  to  actually  make a suit- 
able  rearrangement, one  must  be  able  to  identify R linearly  independent  columns of C. 
This  identification  may not be  easy. 

Since  A is nonsingular,  an  inverse of A  exists  and is unique.  Equation (7) is 
satisfied  therefore if, and  only  if, 

c(a) = -A-lS(b)  (8) 
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where  A-l is the  inverse of A. It follows  that  the  equat.ions of constraint  (eqs. (4)) 
are satisfied i f ,  and  only i f ,  

where 

In  equation (10) I is an  identity  matrix of order P - R. Thus,  the  matrix p is a 
P x (P - R) matrix. 

Substitution of equation (9) into  equations (5) and (6) gives  an  expression  for  the 
Lagrangian L and  the  work W in  terms of independent  coordinates  and  in  the  forms 
shown  by  equations (1) and (3) ,  respectively.  The  components of the  expressions are 

where  it is to  be  considered  that  the  substitutions  from  equation (9) have  made  the  ele- 
ments of the  matrix  functions of the  coordinates  qn  and/or  the  time  explicitly. 

It is noted  that  the  matrices M and K thus  derived are symmetric. For empha- 
sis, it is pointed  out  once more  that  applicability of this  method is restricted  to  the  case 
where  the  rank R of the  matrix C is equal  to  the  number of rows of C and  that as a 
practical  matter  in  the  application, one is required  to  identify R linearly  independent 
columns of the  matrix C. 

It is of interest  to  consider  at  this  point  the  situation  where  contrary  to  the  assump- 
tion  made  in  the  foregoing  discussion,  the  rank R of C is less than  the  number of 
rows of C. It is natural  for  an  analyst  in  idealizing a physical  system  to  try  to  specify 
only  the  minimum  number of equations  necessary  to  define  the  system.  In  this  event  the 
rows of C are linearly  independed  and  consequently  the  rank of C equals  the  number 
of rows.  However,  in stress and  vibration  analyses of engineering  structures,  experience 
is showing  that it is possible  to  specify  inadvertently  equations which repeat  the  content 
of equations or combinations of equations  previously  written.  In fact, it can  be of great 
convenience to  be  able  to  accept  redundant  equations as may be seen  from  one of the 
examples  given  subsequently. Not much  has  been  written  on  practical  methods  for 
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solving  systems  with  dependent  equations.  However,  reference 5 provides a good illus- 
tration of how dependent  equations of constraint  may  arise  in  practice  and  also a brief 
discussion of an  elimination  approach  used  to  solve  them. 

ZERO  EIGENVALUES  THEOREM 

The  objective is to  prove a theorem  that is the  foundation of the  method of this 
paper.  Consider  the  equation 

cij = 0 (1 3) 

where  C is a matrix  with  any  number of columns  and  any  number of rows.  Let P be 
the  number of columns  and  R  the  number of rows. 

Let a square  matrix  E of order  P be defined by the  equation 
E = C'C (14) 

(It may  be  noted  that  the  determinant of E is the  Gramian of the  vectors  comprising  the 
columns of C. (See ref. 6.)) By transposing both sides of equation (14) and  using  the 
familiar  rule  for  transposing  products of matrices, it follows  that 

E' = C'(C')' = E (1 5) 

Therefore, E, being  equal  to its own transpose, is symmetric.  

It is a well-known property of symmetric  matrices  that  there  exist  orthogonal 
matrices U of order P satisfying  the  following  equation: 

U'EU = X (16) 

where X is a real  diagonal  matrix of order  P. By customary  usage,  an  orthogonal 
matrix  having  this  property is called a modal  matrix of E,  and  the  numbers  occupying 
the  main  diagonal of X are  called  eigenvalues of E.  To  say  that U is orthogonal 
means  that 

u'u = uu' = I 

where  the  identity  matrix I is of order  P. 

Let Xp represent  the  eigenvalue at the  intersection of the  pth  row  and  the  pth 
column of X. If any  modal  matrix of E is given, it is easy  to  construct a modal  matrix 
of E so  that 

X 1 2 X 2 2 X 3 2 . .  . Z A P  (18) 

since  the  positions of the  eigenvalues  can  be  reordered  simply by reordering  the  columns 
of the  given  modal  matrix.  Henceforth,  in  this  paper when reference is made  to a modal 
matrix, it is to  be  understood  that  the  columns are ordered so that  inequality (18) holds. 
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The  convention of the  preceding  paragraph  being  understood, it is well-known that 
the  eigenvalue  matrix A associated  with a symmetr ic   matr ix  E is unique;  that is, 
any  modal  matrix of E  when substituted for U in  equation (16) produces  the  same 
matrix A. 

Let v  be  an  arbitrary  column  matrix  with P elements,  and let a quadratic 
expression S be defined by the  equation 

S = V'EV  (19) 

Note  that  equation (19) can  be  written as 
s = V'C'CV 

or  alternatively, by  using  equations (16) and  (17), 

S = v'UU'EUU'V = V'hV (2 1) 

where U is any  modal  matrix of E  and  where - 
v = u 'v  

Equation (20) shows  that S cannot  be  negative  for  any non null v. Equation (21) shows 
that  there exist non null  forms of V which will make S negative i f ,  and  only if ,  at 
least one of the  eigenvalues Xp is negative. If any  choice of V is given,  then  v  given 
by v = Uf will  satisfy  equation (22).  (See eq. (17).) Therefore, if one or more of the 
eigenvalues  were  negative,  there would exist forms  of v  making S negative  and  this 
condition would be a contradiction. It follows  that  the  eigenvalues AP are each  positive 
or  zero.  

Let  an R X P matrix D be  defined  by  the  equation 
D = CU 

Then  from  equations (14) and  (16), it follows  that 
D'D = x 

Let G be  the  number of the  eigenvalues Ap which are  positive.  Then  the last 
P - G eigenvalues are   zero.  It follows  from  equation (24) that D has  the  partitioned 
form  indicated by the  equation 

In  equation (25) the null  matrix 0 is an R X (P - G) matrix  and  the  matrix is an 
R x G matrix with  mutually  orthogonal  columns so that 

J I D D = X  (26) 

where x is a diagonal  matrix  the  diagonal  elements of which are the G positive  eigen- 
values of E as indicated by the  .equation 
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By using  equation (17), the  equations of constraint  (eqs. (13))  may be written as 

cuu'; = 0 (28) 
or  alternatively 

Dz = 0 (29) 

It is clear  from  equation (25) that  equation  (29) is satisfied if the  f irst  G elements 
of 2 are zero  whatever  the  last P - G elements of may  be. 

Premultiplying  both  sides of equation (29) by E' and  substitution of equation (25) 
leads  to  the  equation 

&) = 0 (31) 

where i?(g) is a column  matrix  the  elements of which are   the  f i rs t  G elements of Z. 
Thus,  equation (29) cannot be satisfied  unless  the first G elements of i? are zero. 

Solving  equation  (30)  for S gives  the  unique  solution 

s = uz 
Thus,  the  following  theorem has been  proved: 

Theorem:  Consider  any  set of linear  homogeneous  equations 
c; = 0 (334  

and let the  symmetric  matrix E be defined by 

E = C'C ( 3 3b) 

The most  general  solution of the  equations  may be expressed  in  the  form 

S =  Tq  (334 

where T is a matrix  whose  columns are the  columns of any  modal  matrix 
of E corresponding  to  eigenvalues of E which  have  the  value  zero,  and 
where q is an  arbitrary  column  matrix  conformable  with T. 

11 



COMPUTATIONAL PROCEDURE 

With the basic theorem  from  the  preceding  section,  the  following  procedural  outline 
may  be set forth. It is assumed  that  the  generalized  forces  in  the  column  matrix a 
are functions of time  alone. (If a is a function of the  coordinates cp explicitly,  addi- 
tional  substitutions  will  be  required  which  depend  on  the  functional  form of a.) 
Given: 

(1) E and g, both  constant  symmetric  matrices of order P 

(2) C, a constant  matrix  with P columns  and  any  number of rows 

(3) a, a column  matrix  with P elements  each of which  may  be a 
function of time. 

Object: 

(1) To  compute a matrix  T so that: 

(a)  The  transformation 6 = Tq  relates  the  dependent  coordinates 6 
appearing  in  equations (5) and (6) to  a se t  of independent  coordi- 
nates  q  suitable  for  use  in  equation (2) 

(b) The  transformation Q = T'G produces a matrix Q suitable 
for use  in  equation (2) 

(2) To  compute  matrices K and M suitable for use  in  equations (1) 
and (2). 

Procedure: 

(1) Compute  E  where  E = C'C.  Then  E will be  symmetric of order 
P and  positive  semidefinite 

(2) Compute a modal  matrix U and  the  eigenvalues Xp of the  matrix  E 
(where  p = 1, 2,  3 ,  . . ., P). This  operation is standard at modern 
computing  installations  and,  in  'fact, is one of the  most  successful  appli- 
cations of digital  computers 

(3) Identify  the  columns of U which correspond  to  zero  eigenvalues.  This 
step  requires  attention  because  in  principle  one  can  fairly  question  the 
possibility of a rigorous  distinction  between  finite  eigenvalues  and  eigen- 
values  having  the  value  zero when, as is normal,  there is any roundoff 
error   in   the  process  by  which  the  eigenvalues are computed.  This  point 
is discussed  in  the  section  "Comments  on  Numerical  Aspects of 
Computation'' 
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(4) Assemble a matrix  the  columns of which are the  columns of U cor- 
responding  to  the  eigenvalues  having  the  value  zero.  This  matrix is. 
the  required  transformation  matrix T. Its dimensions are P by 
P - G where G is the  number of positive  eigenvalues of E 

(5) Compute K and M by  the  formulas K = T'KT and M = T'MT. 
Then K and M will be symmetric. 

RELATION TO PREVIOUS METHOD 

Equation  (33c)  gives the most  general  solution  to  the  equations of constraint 
(eq. (4)). Since  the  matrix ij appearing  in  equation  (33c) is completely  arbitrary,  the 
solution  can  just as well  be  stated  in  the  form 

= THq = F q  (34) 

where H is any  nonsingular  square  matrix of order  P - G and  where 
- 
T = TH (3 5) 

In  order  that a matrix ;I; may  be  written as in  equation (35), it is both  necessary 
and  sufficient  that  the  columns of constitute a set of linearly  independent  eigenvectors 
of E  corresponding  to  the  eigenvalues of E which  have the value  zero.  The  eigenvec- 
tors  in 5; will  not,  in  general,  be  orthonormal  nor  even  orthogonal.  The  columns of 
are orthonormal i f ,  and  only i f ,  H is an  orthogonal  matrix  and  orthogonal if H is a 
diagonal  matrix.  Proof of these  statements  will not be made as they  amount  merely  to a 
formal  statement of the basic  results of that  portion of the  theory of matrices which deals 
with  repeated  eigenvalues of a real  symmetric  matrix.  (See,  for  example, ref. 7.) A 
connection  may now be  made  between the method of this  paper  and  the  textbook  method as 
given  in  reference 4. 

By assuming  that  the  column  and  coordinate  rearrangements  leading  to  equation (7) 
have  been  carried  out,  one  may  write 

A' 

B' 

""- 

- 

A i B ] =  I I 

A' A 

B' A 
"-" 
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It follows  that 

where  in  equation (37) the  matrix  on  the  right is a P X (P - R) null  matrix. It is clear 
from  equation (37) that  the  columns of p are linearly  independent  eigenvectors of E 
corresponding  to P - R eigenvalues  having  the  value  zero.  The R X R submatrix 
A'A is of rank R. The  matrix E is consequently of rank R and  possesses  no  more 
than P - R eigenvalues  with  value  zero. 

Thus,  the  textbook  solution, which is a variant of Gauss's classical elimination 
algorithm, is seen  to  be a s.olution of the  form of equation (34). 

FIRST EXAMPLE 

In  the first example,  the  method of this  paper is applied  .to  derive  the  equations of 
motion of a simple  chain of spring-mass  elements.  The  main  intent is to  illustrate  an 
application of the  method.  However,  some  points of general  interest  arise. 

The  system  consists of five  point  masses  connected by linear  massless  springs as 
shown  in  sketch (1). Each of the  masses  and  each of the  spring  constants are assumed  to 
have  unit  magnitude.  The  masses  may  displace  only  in  the  horizontal  direction  and  the 
displacement of the nth mass  referred  to its undeformed  position is denoted by X,. A 

positive  vaiue of Xn is taken  to  mean  displacement 
to  the  right,  and a negative  value,  displacement  to  the 

1 2 3 4 5 left. A horizontal  external  force  Fn,  positive  to  the 

Sketch (l).- Spring-mass  system. right  and a function of time  only,  acts upon the  nth 
mass.  

The  five  displacements  constitute a se t  of independent  coordinates  which  determine 
the  configuration of the  system at any  instant;  and  in t e r m s  of these  coordinates, it is 
easy  to  write down directly  equations of motion of the  system  in  the  form 
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where 

K =  

- 
1 - 1  0 0 0 

-1 2 -1 0 0 

0 -1 2 -1 0 

0 0 -1 2 -1 

0 0 0 - 1  1 
L 

1 0 0 0 0  

0 1 0 0 0  

0 0 0 1 0  

0 0 0 0 1  Q=F] 
F5 

Equation (38) has  the  form of equation  (2).  Thus,  from a practical  point of view, 
the method of this  paper is not  needed  for  an  analysis of the  system  since  the  end  result 
of the  method,  equations of motion  in t e r m s  of indepen- r\nrv~1 
dent  coordinates, is readily  obtained  by  inspection. 
However,  since  the  object is to  illustrate  the  method, 
let the system  be  viewed  in a different  way as illus- 
trated  in  sketch (2). There  the  system of sketch (1) 

1 2 3  4 5  6 7  8 

Sketch (2).- Cut  system. 
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is shown  figuratively  divided  into  four  parts by cuts at the  three  inner  masses  to  produce 
an  eight-mass  system.  The half circles represent  masses of one-half-unit  magnitude. 
The  displacement of the  pth  mass of this  cut  system is denoted  by 4 P' 

It is assumed  that  three  equations of constraint are imposed on the  coordinates; 
namely, 

(2 = 93 (404  

Thus  the  coordinates sp are not independent,  and  from  the  simple  geometric  considera- 
tions  involved,  it is clear that  under  these  equations of constraint,  the  systems of 
sketch (1) and  sketch  (2) are the  same.  In  terms of the  coordinates GP, a Lagrangian 
of the  system  may  be  expressed by an  equation  like  equation (5) with 

1 - 1  0 0 0 0 
- 1 1 0 0 0 0  

E = [  0 0 0 0 0 0 - 1  0 1 - 1  0 1 0  0 1 - 1  0 0 

0 0 0 0 - 1  1 
0 0 0 0 0 0  
0 0 0 0 0 0  

7 

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
1 -1 
,1 1 - 

7 

1 0  0 0 0 0 0 0  
0 1 / 2  0 0 0 0 0 0 
0 0 1 / 2 0  0 0 0 0  
0 0  0 1 / 2 0  0 0 0  
0 0  0 0 1 / 2 0  0 0  
0 0  0 0 0 1 / 2 0 0  
0 0 0 0 0 0 1 / 2 0  
0 0  0 0 0 0 0 1  

_I 
- 

The  work W for  the  system  may  be  expressed by an  equation  following  the  form 
of equation  (6)  with 

i t  is noted  that  the  form  indicated by  equation (42) for the  matrix a' is not unique.  The 
following  form,  for  example,  will  serve  equally  well: 

16 



All  that is required is that ?$ when  introduced  in  equation (6) should  yield  the  work  done 
during  any  displacement  consistent  with  the  equations of constraint. 

Equations (40), the  equations of constraint,  may be put  in  the  form of equation (4) 
with 

p 1 - 1 0  0 0  
O O l  

c = o o  0 1 - 1 0  

l o o  0 0  0 1 - 1 0  O I  
(44) 

The first step  in the application of the  method is to  compute  the  matrix E defined 
by  equation (14). This  computation  yields 

0 0 0 0 0 0  
- 0  1 - 1  0 0 0 ::I 

0 - 1   1 0  0 0 0 0  
0 0 0 1 - 1  0 0 0  
0 0 0 0 0 - 1  0 0 0 1 0   1 - : j  

0 0 0 0 0 - 1   1 0  
- 0 0 0 0 0 0 0 0  

(4 5) 

The  matrix U which  follows is a modal  matrix of the  matrix E ,  as may  be  easily 
verified by substitution of the  matrix  into  equations (16) and (17). 

U =  

- 
0 

1 /E 
- l/E 

0 

0 

0 

0 

0 
L 

0 0 1 0  0 0 0  

0 0 0 l /@ 0 0 0  

0 0 0 l/fi 0 0 0  

l/fi 0 0 0 1 J f i  0 0 

-l/@ 0 0 0 l/fi 0 0 

0 ljfi 0 0 0 lffi 0 

0 - 1 / n  0 0 0 l/fi 0 

0 0 0 0  0 0 1  

The  matrix X containing the eigenvalues  associated  with  the  modal  matrix is 
given by 
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I I I I11111 II l111ll1l111 

x =  

- 
2 0 0 0 0 0 0 0  
0 2 0 0 0 0 0 0  
0 0 2 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
I 

(47) 

The first three  eigenvalues  are  finite  and  the last five  have  the  value  zero.  Therefore 
the last five  columns of U constitute a suitable  transformation  matrix  T. It follows 
that  acceptable  independent  coordinates  for  describing  any  configuration of the  system 
consistent  with  the  equations of constraint are five  coordinates  qn  related  to  the  dis- 
placements by the  equation P 

- 
1 0 0 

0 l/E? 0 0 0 

0 l/E 0 0 0 

0 0 1/Jz 0 0 

0 0 l/E 0 0 

0 0 0 1/Jz 0 

0 0 0 1/Jz 0 

From  the  equation  Q = T'Q it follows  also by using  either  equation (42) or  equation (43) 
that  generalized  forces  suitable  for  use with the  coordinates  qn  are  given by 
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Completing  the  steps  in  the  method  gives 

I 1  

1 0  
0 1/2 
0 0  
0 0  
0 0  

-1/@ 

-1/a 1 

K =  T'KT = o - 1/2 

0 0 

L o  0 

0 0 0  
0 0 0  
1/2 0 0 
0 1/2 0 
0 0 1  

0 0 

-1/2 0 

1 - 1/2 

0 

0 

0 

- 

-1/2 1 -l/fi 

0 -1fJz 1 

Equations (49), (50a)  and (50b) give all the quantities  necessary  for  writing  the  equations 
of motion  for the spring-mass  system  in  the  form of equation (2). By use of equation (48), 
solutions of the  equations  giving  time  histories of the  coordinates  qn  can  be  transformed 
into  time  histories of the original  coordinates cjp. If initial  conditions  consistent  with 
the  equations of constraint are given  in t e rms  of the  coordinates spy the  equations 

q = T'q (51) 
and 

q = T'G (52) 

may be used  to  convert  them  into  initial  conditions on the  coordinates  qn. 

It  may  be  noted  that  the  matrices K, My and Q given  in  equations  (50b),  (50a), 
and (49) are not identical  to  the  corresponding  matrices  in  equations (39) which were 
written down directly  from  simple  physical  considerations.  Either set of matrices  forms 
a valid  basis  for  equations of motion of the  system of sketch (1). The  difference  between 
the  matrices arises from  the fact that  the  coordinates  qn  determined by the  method of 
this  paper are not related  to the coordinates sp in  the  same way as are the  displace- 
ment  coordinates Xn. Equation (48) shows  the  relationship  between  the  coordinates  qn 
and ip whereas  coordinates Xn and ijp are related by the  equation 
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Equation (53) may  be  written 

ij = Tx 

7 

0 

0 

0 

0 

0 

0 

0 

1 - 

(53) 

where 
- 
T = TH (55) 

in  which  T is the  transformation  matrix  in  equation (48), derived by the  method of this 
paper,  and 

H = O O f i O  0 

o o o \ I z o  
1 0  o o o 1 J  

Thus  the  coordinates X, which  represent  displacements of masses are in  the  category 
of coordinates  discussed  in  connection  with  equation (34). The  foregoing  discussion 
illustrates a feature of the  method of this  paper  which  should  be  recognized by anyone 
using  the  method;  that is, the  coordinates  qn  produced by the  method are generally 
abstract  in  character  and  do not  lend  themselves  to  simple  physical  interpretations. 

It is instructive  to  reexamine  the  matrix  C  in  equation (44) and  to  think  about  the 
decisions  involved  in  applying  the  textbook  method.  Consider  the  three  pairs of displace- 
ments (G2,G3), (G4,i5), and 96997 straddling  the  cuts  in  sketch (2). Let  triplets of dis- 
.placements  be  formed by  taking  one  and  only  one  displacement  from  each  pair,  for 
example, ({,,c5,i7). If the  displacements  in  any  such  triplet are taken  to  make up the 

elements of the  column  in  equation (7), the  matrix A formed  from  the  corre- 
sponding  columns will be  nonsingular  and  the  textbook  method  will  succeed. If the ele- 
ments of are chosen  from  among  the  eight  coordinates 6 in  any  other  way,  the 
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matrix  A  will  be  singular.  In  applying  the  textbook  method  to  this  simple  problem, 
recognition of the  combinations of coordinates  suitable  to  form i(a) must  come  about 
either  from  physical  insight or from  understanding of linear  dependence  among  the  col- 
umns of. C. In  applying  the  method of this  paper, it is not necessary  to  think  directly 
about  the  physics  involved or about  the  linear  dependence.  Instead,  the  problem  becomes 
one of finding a modal  matrix of E and  identifying  the  columns  associated  with  eigen- 
values  having  the  value  zero.  Because of the  block-diagonal  form of E in  this  case, it 
was  possible by inspection  to  put down exactly a modal  matrix  and  the  eigenvalues of E. 
Therefore, all decisions  in  the  application of the  method of this paper  could  be  made eas- 
ily on a purely  mathematical basis. 

SECOND EXAMPLE 

The  purpose of this  second  example is to  show a condition  in  which  redundancies 
in the equations of constraint  arise  in a natural way. The  mechanical  system is shown 
in  sketch (3). A  cylindrical  elastic  shell is fixed  at  one  end  to  an  immovable  base. At 
the  other  end, a thin  massive  rigid  disk is attached  to  the  wall of the  shell by four  pins 
placed at 90° intervals  around  the  circumference.  Points  in  the  shell  wall  are  assumed 
to  displace  only  longitudinally. 

pin\F-< 
Disk 

Sketch (3).- Shell  with  attached  disk. 

By adopting  an  approximation  common  in  practical  vibration  analysis, the longi- 
tudinal  displacement  u of a general  point  in  the  shell  wall is expressed as a linear  com- 
bination of a finite  number of displacement  functions.  The  expansion  assumed is 



where  m  takes on positive  integral  values  and  the  summation  sign  indicates  summation 
of the  terms  corresponding  to  some  finite  number of selected  values of m.  The  coeffi- 
cients tj and a r e  functions of time  alone  and  serve as coordinates which 
describe  the  instantaneous  configuration of the  shell. 

m,o m,4 

By assuming  small  displacements,  the  instantaneous  position of the  disk is deter- 
mined by specification of three  coordinates  zc, at, and aq defined as follows: 

(1) zc is the  displacement of the  center of the  disk  parallel  to  the  longitudinal 
axis of the  shell 

(2) at and aq are  small   rotations about  axis 5 and q, respectively, as shown 
in  sketch (3) .  

Equating  the  displacements of the  disk  to  the  displacements of the  shell at each of 
the  four  pins  gives 

I 

where r is the  radius of the  cylinder. If, in  the  summation on the  right, only the  terms 
corresponding to m = 1 are  retained,  the  equations  may be  put  in  the  form 

cs = 0 

where 

1 0 -1 -1 -1 

1 1 0 -1 -1 

1 0 1 -1 -1 

1 -1 0 -1 -1 

c =  [ 
- 

(59) 
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and 

It will be clear on inspection  that  an  attempt  to  determine  independent  coordinates 
for  this  system by a straightforward  application of the  textbook  method  must fail because 
any  choice of the  matrix A will  lead  to a matrix  which has at least two  proportional 
columns  and  which is therefore  singular.  This  difficulty  stems  from  the  fact  that  the 
system of equations is redundant;  the  redundancy  may  be  demonstrated by adding  rows 1 
and 3 of matrix C and  subtracting  row  2  from  the  result  to  produce  row 4. 

One way to  determine  independent  coordinates would be  to  discard  the  fourth  equa- 
tion  from  the  system  and  apply the textbook  method to   the first three equations.  However, 
this  approach  requires,  in  general,  the following: 

(1) Recognition  in  the first place  that  the  system is redundant 

(2)  Identification of dependent  equations 

(3) Identification of a nonsingular  submatrix A after  redundant  equations are 
discarded. 

For  the  example  problem  under  consideration,  the  required  understanding of the 
structure of the  equations  may be gained by inspection.  In  practical  work,  however,  there 
may  be  many  equations of constraint  involving  many  unknowns,  and  the  coefficients  making 
up  the  matrix C will  usually not be  small  integers.  Generally,  in  such  situations,  little 
of use  can  be  deduced  about  the  system  merely by inspection of the matrix of coefficients. 
Also, one  cannot  always  rely  on  physical  insight  to  detect  and  understand  redundancies. 
Furthermore,  there  are  considerable  theoretical  and  practical  difficulties  in  making  com- 
putational  tests  for  redundancy when there is er ror ,   such  as roundoff e r ror ,   in  the process 
by which the  coefficients of the  equations of constraint are generated.  (See ref. 5.) 

Proceeding now to  apply  the  method of this  paper  yields  the  matrix E as 
- 

4 0 0 -4 -4 
0 2 0  0 0 
0 0 2  0 0 
- 4 0 0  4 4 

- - 4 0 0  4 4 
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The  eigenvalues of E are 

x1= 12 
x2 = 2 

x4 = 0 
x3 = 2 I 
x g  = 0 i 

It may  be  easily  verified  that  the  two  columns of the  matrix T which  follow are ortho- 
normal  eigenvectors of E corresponding  to  the  two  eigenvalues X4 and X5 which 
have  the  value  zero. 

0 0 

T =  0 0 

-116 llhi 

Therefore  the  system  may  be  described by  two  independent  coordinates q1 and q2 
related  to  the  coordinates  in 6 by the  equation 

4 = Tq (6 5) 

As  can  be  seen,  direct  concern  with  the  number  and  nature of redundancies  in  the 
equations of constraint is unnecessary when the  method of this  paper is used.  The  prob- 
lem  reduces  in  substance  to  that of determining a modal  matrix of E and  identifying 
the  columns which correspond  to  eigenvalues  with  the  value of zero. 

COMMENTS ON  NUMEFUCAL ASPECTS O F  COMPUTATION 

In  the  examples it was  possible  to,put down exactly  the  matrix  C,  to  carry out 
exactly  the  multiplication  C'C  to  produce  the  matrix E, and  to  determine  exactly  the 
eigenvalues of E  and  orthonormal  eigenvectors  corresponding  to  the  eigenvalues  with 
value  zero. In practical  work,  however,  numerical error due to  roundoff and/or  trunca- 
tion  may  be  introduced  at  any of these  three  stages of calculation.  The  extreme  effect 
of such   e r rors  would, of course,  be  complete  loss of numerical  significance  in  the  digits 
representing  the  eigenvalues of E  and  the  elements of the  eigenvectors of E.  In  the 
event  the  computation is subject  to  serious loss of significance,  the  matrix  C is said 
to be  "ill-conditioned"  with  respect  to  the  computing  process  used.  The  best  indication 
of ill-conditioning is sensitivity of final  results  to  small  changes  in  the  elements of C. 
The  authors  have  applied  the  method of this  paper a number of times  in  practical  vibration 
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analysis  and  have  not  encountered a situation  in  which  the  matrijr C is ill-conditioned. 
From general  experience,  however,  the  possibility of ill-conditioning  must be anticipated 
whenever  simultaneous  equations are solved  numerically,  and  the  method of this  paper 
presents no exception to  this  statement. When an  ill-conditioned  system arises, the 
recourse  most  often  open is to  increase  the  number of digits  carried  in  the  computation. 
If this  procedure is attempted  in  connection  with  the  method of this  paper, it should  be 
recognized  that it may  be  necessary  to  increase  the  carried  significant  figures  in the 
stage of the  calculation  in  which  the  elements of C are generated as well as in  the 
implementation of the  multiplication C'C and  in  the  calculation of the  eigenvalues  and 
eigenvectors of E. 

Another  consequence of numerical   error  is that  finite  numbers  may  be  generated 
for  eigenvalues of E which  would  be precisely  zero if there  were no error  in  the  com- 
puting  process.  Thus,  the  question is raised,  in  principle at least, of the possibility of 
rigorous  distinction  between  finite  numbers  representing  finite  eigenvalues of E and 
finite  numbers  representing  eigenvalues of E which are, in fact, zero.  In  the  authors' 
experience  this  possibility  has not proved  to be a problem  in  practice.  The  authors  use 
the  threshold  Jacobi  method  (ref. 8) to  compute  the  eigenvalues  and a modal  matrix of E. 
Approximately 15 significant  figures  are  carried  throughout  the  calculation. With this 
procedure,  inspection of the  eigenvalues  computed  for E has  always  revealed  two 
clearly  distinguishable  sets of numbers, the numbers  in one set  being  many  orders of 
magnitude  smaller  than  the  numbers  in  the  other  set.  The  set of numbers with relatively 
large  magnitudes are regarded as finite  eigenvalues,  and  the  remaining  numbers are con- 
sidered  to be eigenvalues  with  value  zero. 

It is not difficult  to  show  that  the  number of finite  eigenvalues of E is equal  to R, 
the rank of C. Frequently, R is known from  physical  or  geometric  considerations. 
In  particular,  it  often  occurs  that one  knows that the  equations of constraint are linearly 
independent  in  which case  the  rank R of C is equal  to  the  number of rows of C. 
Such  advance  information, of course,  enhances  confidence  in  the  identification of zero 
eigenvalues. 

The  purpose of this  paper is to  present a new  method by which  equations of motion 
of a linear  mechanical  system  can  be  derived  in  terms of independent  coordinates  when 
the  Lagrangian of the  system  and the generalized  forces are expressed  with  r-eference 
to  coordinates  which are not  independent  but  instead are governed  by  linear  homogeneous 
equations of constraint. 
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As background,  there  are  recalled well-known mathematical  forms of the 
Lagrangian  and  the  work  statement  associated  with  small  oscillations of mechanical 
systems. When the  coordinates  utilized  to  develop  these  expressions  are  independent, 
Lagrange's  method  may  be  applied  to  determine  differential  equations of motion of the 
system  in a form which has  been  well  studied  and is subject  to  powerful  methods of 
solution.  However, as a matter of convenience,  practical  analysis  frequently starts 
with  coordinates  which a r e  dependent by virtue of the  imposition of linear  homogeneous 
equations of constraint.  Thus, it isuseful   to  know a relationship by which the  dependent 
coordinates  can  be  transformed  into a set of independent  coordinates. 

Next,  there is a discussion of methods  previously  used  for  constructing a t rans-  
formation  from  dependent  to  independent  coordinates.  In one category of analysis,  the 
dependent  coordinates  are  chosen  to  impart a very  simple  form  to  the  equations of con- 
straint s o  that  the  transformation  may  be  written  from  inspection. In a second  category 
of approaches  based on Gaussian  elimination,  some of the  original  dependent  coordinates 
are  selected  to  be  independent  coordinates  and  those of the  original  coordinates  remaining 
are  related  to  those  selected  to  be  independent.  This  procedure  has  the  drawback  that  it 
requires  in  effect  the  identification of a square  nonsingular  submatrix  in  the  matrix of the 
coefficients of the  equations of constraint. 

The  third  part of the  paper is devoted to  the  basic  result, a theorem which se rves  
as a foundation  for a new method  for  constructing  the  transformation  from  independent  to 
dependent  coordinates. 

Theorem:  Let a real  symmetric  matrix be constructed by multiplying  the 
matrix of coefficients  in  the  equations of constraint by the  transpose of the 
same  matrix.  Consider  any  modal  matrix of the  symmetric  matrix so  defined 
and  select  from  the  modal  matrix  the  columns  corresponding  to  eigenvalues 
with value  zero.  Then  the  matrix of these  columns is a legitimate  transfor- 
mation  relating  the  original  dependent  coordinates  to a set  of independent 
coordinates. 

The  advantages of constructing  the  transformation  matrix by this  method  are (1) compu- 
tation is reduced  essentially  to  generating a modal  matrix  and  the  eigenvalues of a real  
symmetric  matrix  and (2) the  method is applicable  to  systems  where  there  are  redundant 
equations  among  the  equations of constraint. 

Computing procedures  for  applying  the  method  are  given  in  outline  form,  the  method 
is applied  to  two  simple  physical  problems,  and  numerical  considerations  in  the  applica- 
tion of the  method are discussed. Also a connection is made  between  the  method of this 
paper  and  the  method  generally  given  in  engineering  textbooks.  In  addition  to  illustrating 
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the  method,  the  examples  bring out the  abstract  nature of the  coordinates  produced by 
the  method  and  indicate how redundancies  in  the  equations of constraint  may arise in 
practical  vibration  analyses. 

Langley  Research  Center , 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., August 11, 1969. 
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